GTx011, A POTENT ALLOSTATIC MODIFIER OF HEMOGLOBIN OXYGEN AFFINITY, PREVENTS RBC SICKLING IN WHOLE BLOOD AND PROLONGS RBC HALF-LIFE IN VIVO IN A MURINE MODEL OF SICKLE CELL DISEASE

Goal: To develop an orally available small molecule that enables chronic preventative therapy for sickle cell disease

Approach:

• Design a long-lived, once daily-dosing, direct acting HbS modifier

• Inhibit HbS polymerization by increasing the fraction of oxy-Hb within RBCs

• Chronically and consistently achieve anti-sickling activity

PROPHYLACTIC THERAPY FOR SICKLE CELL DISEASE
GBT440 (GTX011) ALLOSTERICALLY MODIFIES HbS AND INCREASES Hb-OXYGEN AFFINITY

Crystal structure shows one GBT440 molecule per Hb tetramer

SCD Blood at 20% Hct (~1 mM Hb)

%O₂ Saturation

pO₂ (mm Hg)

1000 µM
600 µM
300 µM
No cmpd
Persistent expression of HbF in the range of 15-35% prevents virtually all clinical manifestations of SCD.

GBT440 modified-HbS has similar in vitro anti-polymerization activity as HbF.

Hypothesis: A 20-30% HbS modification with GBT440 will be sufficient to prevent sickling.
DRAMATIC RBC PARTITIONING AND SUSTAINED EXPOSURE FOLLOWING SINGLE DOSE

<table>
<thead>
<tr>
<th></th>
<th>Rat</th>
<th>Dog</th>
<th>Monkey</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV Dose (mg/kg)</td>
<td>1.6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO Dose (mg/kg)</td>
<td>7.2</td>
<td>2.5</td>
<td>4.3</td>
</tr>
<tr>
<td>Oral bioavailability (% F)</td>
<td>60</td>
<td>37</td>
<td>36</td>
</tr>
<tr>
<td>Blood/Plasma Ratio</td>
<td>69</td>
<td>74</td>
<td>71</td>
</tr>
<tr>
<td>T1/2 (hr)</td>
<td>19</td>
<td>78</td>
<td>39</td>
</tr>
</tbody>
</table>

![Graphs showing concentration over time for Rat, Dog, and Monkey](image-url)
MEASUREMENT OF THE HB-OXYGEN DISSOCIATION CURVES AND SICKLED CELLS

- Hand counting
- Image analysis
- Image cytometry
GBT440 INHIBITS IN VITRO SICKLING OF SCD BLOOD

- SCD blood was treated with GBT440 prior to deoxygenation.

- GBT440 dose-dependently inhibits sickling and shows antisickling activity at 30% HbS modification (300 µM)
GBT440 REDUCES *IN VITRO* SICKLING AT 30% Hb MODIFICATION

pO2 (40mm Hg)

- **No cmpd**: 50% Sickled Cells
- **GBT440 (300 µM)**: 11% Sickled Cells

Representative images shown
GBT440 REDUCES IN VITRO SICKLING AT 30% Hb MODIFICATION

pO2 (40mm Hg)

<table>
<thead>
<tr>
<th>No cmpd</th>
<th>GBT440 (300 µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% Sickled Cells</td>
<td>11% Sickled Cells</td>
</tr>
</tbody>
</table>

Sickled cells are circled
Representative images shown
MURINE SICKLE CELL MODEL

- Townes knock-in sickle mice were used (Wu 2006)
 - Express only the human globins (α, γ and β^S)

- Mice were administered single oral doses GBT440 (100 mg/kg)
 - Blood samples: Pharmacokinetics, CBC, Oxygen dissociation curves & % Sickled cells.

- Repeat dosing of GBT440 (100 mg/kg), po BID for 9-12 days
 - Following repeat dosing:
 - RBC half life: pulsed labeled with biotin, flow cytometry.
 - Reticulocyte count: thiazole orange, flow cytometry.
GBT440 PROTECTS RBC AGAINST SICKLING FOLLOWING SINGLE ORAL DOSE IN TOWNES SS MICE

- Single oral dose of GBT440 at 100 mg/kg
- Blood concentration at Cmax was 158 µM (11% Hb occupancy)
GBT440 INCREASES Hb-OXYGEN AFFINITY FOLLOWING REPEAT ORAL DOSING IN TOWNES SS MICE

![Graphs showing O2 Saturation vs pO2 and p50 vs Hb Occupancy for SS vehicle and SS GBT440](image-url)
GBT440 DECREASES EX VIVO RBC SICKLING FOLLOWING REPEAT ORAL DOSING IN TOWNES SS MICE

Representative results from N= 14 are shown
GBT440 PROLONGS RBC HALF LIFE FOLLOWING REPEAT ORAL DOSING IN TOWNES SS MICE

Vehicle-treated: 2.4 ± 0.1 days
GBT440-treated: 3.8 ± 0.1 days
GBT440 DECREASES RETICULOCYTE COUNT FOLLOWING REPEAT ORAL DOSING IN TOWNES SS MICE

Animals with >30% Hb occupancy show 30 % decrease in Reticulocyte count
SUMMARY AND CONCLUSIONS

- *In vitro*, GBT440 increases Hb-oxygen affinity, delays HbS polymerization and prevents sickling in blood from SCD patients

- *In vivo*, in a murine model of SCD
 - Single oral doses of GBT440 demonstrate increased Hb-oxygen affinity and *ex vivo* anti-sickling activity
 - Repeat oral GBT440 dosing shows
 - Increased Hb-oxygen affinity
 - *Ex vivo* anti-sickling activity
 - Prolongation of RBC half-life and decreased reticulocyte counts in mice where 20-40% target Hb occupancy was achieved

- GBT440 shows promise as a disease-modifying treatment for chronic management of patients with sickle cell disease
ACKNOWLEDGEMENT

HbS Project Team at Global Blood Therapeutics

SCD blood obtained from
UNC Comprehensive Sickle Cell Program at Chapel Hill
Children’s Hospital Oakland Research Institute
DISCLOSURES

Research Funding
 Global Blood Therapeutics

Consultancy
 Global Blood Therapeutics